
-A99 422 APPLICATIONS OF SIGNAL. PROCESSING 
IN DIGITAL 

/
COMMUNICATIONS(U) POLITECNICO D1 TORINO (ITALY) DEPT 01

SIID ELETTRONICA N ELIA 18 NOV 87 R/D-5228-CC-02I UNCLASSIIE DAJA45-9"-C-M44 F/G 12/9 US4EhEhEMEEEI
I flfflflffl...fl..
,ENOMOEE



li~it1.8

11.

M %,,- p RESOLUW ON TEST CH4r

-. V. %1
-~ '%



c\ APPLICATIONS OF SIGNAL PROCESSING

qIN DIGITAL COMMUNICATIONS

0

Principal Investigator: Michele Elia

Contractor: Politecnico di Torino

Corso Duca degli Abruzzi 24 - 1-10129 TORINO (Italy)

Contract number DAJA45-86-C-0044

Third Interim Report
(May 1987 - October 1987)

p'C

The Research reported in this document has been made possible through

the support and sponsorship of the U.S. Government through its European

Research Office of the U.S. Army. U--'- n- .i .... -IV f.... H.

'1W4 b.f

10 =dis ~ ~



Our research activity during the period covered by this report
was focused on the design of signal constellations to be used in
trellis codes.
The increased importance of combined codes and modulations have
resorted a wide interest in group codes for Gaussian channel,
first introduced by Slepian, and in the more recent concept of
generalized group alphabet.

Our main aim was to collect and organize the principal results in
this area in order to present a state of the art in group coding
theory. As a consequence some new point configurations were found
and their properties exploited.

The paper herewith enclosed, includes a review of group codes
theory as well as new point configurations which appear promising
for the applications.
The paper was presented at the International Symposium on
Information and Coding Theory held in Campinas -SP -Brazil,

from July 27 to August 3, 1987.
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GROUP CODES AND SIGNAL DESIGN

FOR DIGITAL TRANSMISSION

~by

Michele Elia

Dipartimento di Elettronica - POLITECNICO DI TORINO - ITALY

I - INTRODUCTION

Symmetry seems to be a feature intrinsic to every life process. It

should be a very stimulating undertaking to discuss the fundamental

role played by symmetry in art, music, chemistry, biology, physics,

computer science and more generally in every mathematical science. A

fascinating sample of this subject was provided by H. Weyl [531 in his

last book dedicated to a synthetic view of symmetry. Nevertheless in

this paper we limit our considerations to the key role of symmetry in

communication theory. In this field symmetry plays an indispensable

part in reducing the complexity of every data transmission scheme.

The algebraic notion of group underlies both the geometrical descrip-

tion of digital signals proposed by Shannon, [43], and the geometrical

methods of error control codes developed shortly after Shannon's work.

However the introduction and systematic use of methodology, machinery

and language of group theory in both coding theory and signal design

must be ascribed to Slepian [2,31.

In some way Slepian's approach parallels Klein's Erlagen program on the

foundation of geometry: all geometric objects and concepts can be

formulated starting from the abstract notion of group which provides

This work has been sponsored in part by the United States Army through

its European Research Office grant N. DAJA45-86-C-0044, and in part by

Consiglio Nazionale delle Ricerche through grant N. 86.02428.07.
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the appropr iate t oo for every useful and app I i ed mat 1hemat i c' I t ho rV

In Kle in's words "a geometry is defined by a group of t ransformat ions,

and invest, igat es everything that is invar iant. under t he t rans t ormat i en.

of the given group". in our context the main object lett invariat b

the group is a code, as will be def ined later.

lihe Shannon t heorv of any commun i cat ion process shows t hat t he i nt orma

t ion is inhorent Iv discrete and a 1 so that the qlant it v ot i ut otmt ion

that can be processed by every pract ical system is t inite.

.Signal.s for sending information over physical channels are essent ial I1%

time- and frequency-limited; as a consequence the dimension of t he

signal space is finite. The signal energy, defined as the integral ot

the signal square over its finite time interval, induces an euclidean

metric in this signal space. Therefore, by using an orthonormal basis,

we associate to each signal a point (or vector) in an euclidean finite
dimensional space. In this way a finite set of signals corresponds to a

finite constellation of points that we call a code.

Early in the fifties Slepian introduced the concept of group code in

the design of signal sets for the Gaussian channel. A group code is a

set of M unit vectors spanning an n-dimensional real space, on which

the matrices of a finite group representation operate transitively.

A straightforward generalization of Slepian's group codes is obtained

by considering a set of initial vectors instead of just one vector. The

resulting set of vectors is called generalized group alphabet.

The present awakening of interest in group codes is due to their in-

creasing use in transmission schemes of combined modulation with either

convolutional or block codes, an approach initiated by Ungerboeck.

A fundamental problem for Slepian's group codes is the choice of the

initial vector that maximizes the minimum distance. A second basic

problem concerns the existence of group codes for every pair of inte-

gers with M greater than n. The classification of all configurations of

given dimension is constructively important. As far as we know, only

the classification in dimension three is complete. The same problems,

formulated for generalized group alphabets, seem even more difficult.

a2
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However the field is wide and deserves investigations either from a

purely theoretical point of view or for practical applications.

We are aware of the fact that the theory of group codes is still

incomplete, but the open problems really challenge the human thinking

and stimulate the research work of engineers and mathematicians alike.

4'

11 - SIGNAL SETS: THE GEOMETRICAL MODEL

Signals for sending information are essentially limited both in time

and frequency. According to a point of view accepted in the past, the

simultaneous concentration attainable in both domains is limited by an

uncertainty principle, so named after the analogous relations in

quantum mechanics. Moreover energy constraints are imposed for practi-

cal purposes.

Finite bandwidth W and finite time duration T together imply that the

dimension of the Hilbert space of the signals is essentially finite.

If we require strictly finite duration and simultaneously maximum

concentration of signal energy in a given bandwidth, we have a problem

whose natural mathematical setting is the calculus of variations. This

problem has been thorougly discussed, [30,5,40,41], even if its conse-

quences have not received much attention from the signal designers yet.

Let V be a Hilbert space with support the interval [O,T], and let the

scalar product be defined as

V. T
(TM = f p(t) t(t) dt C(Pt), WPtEcV

where overbar denotes complex conjugation.

The norm square 11.112, defined as llmll = ( o,q,) represents the energy of

the signal q,(t)cV. In the set of linear operators acting in V and

having a discrete spectrum, the operators associated to linear filters

3thSinljt .I testo ieroertr cigi n
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are of particular interest. Let I f ) denote the f i Iter transfer

function. Therefore the Fourier transforms D(f) and '(f), respectively

of filter input. and output signal, are related by

PM (f= 11(f) 4D(f)

The problem now is to seek the input function (P(t), of unit energy, for

which the energy of the corresponding output functions j,(t), in the

bandwidth [-W,W], is as large as possible. That is, we want to maximize

the following integral

I, f" (f) T(f) df = JH(f) 1(f) t(f) , (f) df

% under the constraintW -

12 = 0 (f) q(f) df = 1

Bv means of Lagrange's multipliers the solution is found to be the

eigenfunction associated to the largest eigenvalue of the integral

equation

)(1 J K(t-s) (D(s) ds = X p(t) t[O,T]
0

where the positive definite kernel is defined by the Fourier transform

-W

K(t-s) = H(f)H(f) exp[2ij(t-s)f] df.
-W"

fhe positive eigenvalues A, ordered in decreasing order, exhibit the

typical trend shown in Fig.l, which demonstrates that the dimension of

the signal space of functions limited both in time and frequency is

essentially finite and can be taken to be approximately 2WT, [5]. (If

2TW>10, this statement is true within an energy dispersion of some few

per cent and irrespective of H(f) ).

..
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o 1 2 302WT

Fig.1 Typical behavior of the eigenvalues of equation (1)
Vn

A natural orthogonal basis B = { i(t)}i=1, nS2WT, for the space of the

signals limited both in time and frequency is provided by the set of

normalized eigenfunctions associated to the set of eigenvalues of

greatest value. By means of the basis B, we can uniquely associate to a

given set A of M signals
nmi(t) = Z xij YjL) i=l, .... M

a set C of M vectors

" Xi=(xil.. Xin)

that we call code. The square of the Euclidean length of a vector X is

equal to the energy of the signal m(t).

We can now describe the operation of a quite general model of transmis-

sion scheme at the level of signal manipulation.

A transmitter associates to every source symbol, in a one-to-one way, a

signal chosen in the set A and sends this signal through the channel.

The channel operates by adding to the transmitted waveform m(t) a

sample of a zero-mean random process v(t) with known spectral density.

The received signal is thus

r(t) = ms(t) + v(t) tC[O,TI

where & is a random variable taking values in the set {l,...,M}.

If we confine ourselves to coherent detection, from the observation of

r(t) over the interval [0,T], the receiver makes an estimate of the

value taken by $, that is, an estimation of the symbol emitted by the

5
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source. Let us suppose that all the information relevant to every

10 %detection criterion lies in the signal space, therefore any decision

can be taken by referring to the vector

,=( r)

where T
ri= fit) dt

0'¢

This is equivalent to considering a discrete-time continuous-ampl itiide

additive channel that produces

. r = + N

where: N is a random vector with known probability density f(.);

X& is a transmitted code vector from the code C.

At the receiver end, the decision taker may be described by an exhau-

stive partition of the n-dimensional space into M' disjoint regions Ri,

i=l....M', if the received vector r falls in region Rj then the de-

tected symbol will correspond to the integer j. We say that the demodu-

lator takes a "hard" decision or a "soft" decision depending on whether

M'=M or M'>M respectively. In conclusion the channel is modelled by a

discrete memoryless channel with M input symbols and M' output symbols.

III - MEASURES OF PERFORMANCE

The performance evaluations of group codes on communication channels

rule the development of the entire theory of group codes. Hereafter we

briefly review some important performance indices used in digital

communication systems. In order to avoid discussions depending on

transmission protocols, here and in the following we will deal only

with transmission schemes based on hard decisions. In this context the

most typical index is error probability, i.e. the probability that the

receiver takes a wrong decision about the symbol emitted by the infor-

6



mat. ion source. Assuming in particular equienergetic codes, white Gaus-

sian noise channel and maximum likelihood decision criterion at the

receiver's end, then the regions Ri, i=l,. ,M, will be connected

hypercones bounded by hyperplanes with the vertices in the origin.

Therefore the error probability is given by a sum of n-dimensional

integrals; letting Ri denote the complementary region of R i in Rn  and

let p{X i be the probability of sending message i, we have

M

p(e) = E L f(X-X i ) dX p{X i }

i=l R.i

1JJ
A second important index is the configuration matrix C=(cij) defined as

the Gram matrix of the set of vectors, i.e.

cij =XT X

This matrix C occupies a central position in the theory of group codes.

It conveys all the information relevant to evaluate code performances

on the white Gaussian channel and is also useful to compute other

performance indices.

A third relevant index is the minimum distance defined as the minimum

distance between any pair of distinct vectors of the code, that is

dmin = min 11 xi - xj1
i#j

The evaluation of each performance index is usually very hard, so that

frequently the knowledge of upper and/or lower bounds is of sufficient

interest. As an example we derive an upper bound for the error probabi-

lity, that applies to symmetric point configurations.

Let us assume that the code has a symmetry such that the error probabi-

lities conditioned on a given code vector do not depend on this vector,

i.e. p(e) = p{eIX i} i=l, .. ,M

Let the region Ri, i=l,...,M, be bounded by the set of s hyperplanes of

equations IIX-Xill= IIx-xj11

7



whe re j belongs to a convenient subset of {1_,.,M}; the expl i cit

equation of each hyperplane turns out to be XT(X -X ) =0

Applying the union bound, we get a general upper bound for the c r r) r

probabi l it y

p(e) p{efXi} = f(X-X i ) kIX < X f(X-X i ) dX

S f f(X-X,) dX

where Q is the halfspace defined by the inequality X'(Xi-X) _ 0.

Qo is the halfspace defined by the inequality XT(X -xo ) f 0.

and Xo is a code vector at the minimum distance from X,.

More detailed comments on performance indices will be provided after

the description of the main features of group codes.

IV - GROUP CODES

Symmetry seems to be an unavoidable occurrence for reducing the complt-

xity of every high-dimensional set of signals as required by Shannon's

channel theorem to guarantee high coding performance. For instance, we4

%.' can take advantage of symmetry in designing good decoding algorithms

for error control codes. Symmetry makes feasible the new digital modu-

lation schemes which combine error control codes and modulations.

As we observed in the introduction, symmetry cannot be separated from

the notion of group which discloses symmetry's real nature and con-

stitutes its formal counterpart. It was early in the fifties that

Slepian introduced the group codes for Gaussian channels; his ideas
Vfound a definitive formulation in a stimulating paper [31, in 1965.

.8
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Now let us formal det ine tit ma in object of this paper.

De[init ion I.

Consider a f in ite set. S( : {MG()g ) gc; of real orthogolniI ntiri

Ces that form a faithful represental ion of a finite group G arid cons- "

dec an n-dimensional unit vector X' . The set S((C)Xl = {jXt)g(X: : gt:} 

of M vectors generated by the act ion of S(G ) on X, is cal led group code

and denoted by [M ,n] , if it span-s the n-dimesiona I space; oth0rw iso it

is called planar group code.

I9 in the present theory, group representations by matrices having real

entries are a fundamental mathematical tool.

The theory of group representations originated in the middle of the

nineteenth century from the works of many mathematicians. Equipped with

the theory of group characters, (the character of gcG is the trace of

*the matrix D(g)), the theory of matrix groups assumed a central role in

the development of modern algebra. We do not try to survey this sub- 

ject. To coding theorists we recommend the book by Blake and Mu li n

12], while for a thorough development of the topic we refer to tic

books by Curtis and Reiner 124], Burrow 117] and van der Waerden [48 .

Old fashioned but very rich and suggestive is the book by Burnside,

For easy reference and later use we recall some results concerning

group representat ions.

I A group representation is either irreducible or completely

reducible, i.e. it can be written as direct sum of irreduci-

ble components.

- A representation with real entries may be either real redu-

cible, or real irreducible. In this second case it may still

be complex reducible or not.

* 3 - The number of distinct irreducible components is equal to

the number of group classes.

9

,/

------------------------------------.-



G Given two represent at- ions of groups G and G(l we obt a in a

representat ion of t he i r direct product by means of t he

direct matrix sum

D(g g')= D(g) D I)(g') g(-(; and g'c:(;,

The concept of d irec t matrix sum is very important- in describing the

structure of group codes. The general observation fits a paradigmatic

principle: io many instances to split a problem means to solve it.

Let IGI denote the cardinality of the group G. The cardinality M of the

code may be less than or equal to 1GM. In case it is less there exists

a subgroup H of G such that the initial vector is left invariant, i.e.

fix I=X,

where with HXI we denote the set {X: X=D(h)X1 , hcH}.

The proof of the following theorem is straightforward and follows from

definition I and elementary properties of the groups.

Theorem 1.

i ) I 1!-: and I M!

-. i) i f I GI > M then M I G

where dlb means that d is a divisor of b.

, The following theorem concerning the subgroup H, has an important

consequence on the existence conditions for group codes. It is also

useful to clarify the relations between the group and the code.

Theorem 2.

The subgroup H cannot be normal.

See [7, 12, 35) for a proof.

Theorem 3.

*If G is abelian then IGI = M.

3-* 10
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Bes ides the abstract properties of the group i, ; Iso coihi t ions con-

C ern i ng the skeleton of its represeitat ions are important for distin-

gu ishking between planar and non planar codes.

hi order that an initial vector exists such t kat. t he generated set of

vct ors spans the ri-dimensional space, the representat iois of the group

t; mu.st sat isfv tHe condition expressed in the fol lowin g, I heorem.

Theeorem 4.

Given an n-dimensional representation D(g) of- a group G, a vector

X, uE" exists such that the set (D(g)X,, gcG of ve(ters spans E if

and only if every irreducible representation contained in l)(g) appears

with a multiplicity less than or equal to its dimension.

For a proof see Blake and Mullin [12].

Definition 2.

A representation is said full homogeneous if every irreducible compo-

iont has a multiplicity equal to its dimensionl.

kThe sy-mmetry of a group code is exploited by the configuration matrix.

According to the previous definition, it is air '1 by M matrix of rank n

the entries of which are the scalar products cij = X'r Xj i,j=l ,... ,M.

It is also of interest to define an extended configuration matrix Ce

whenever IGI>M. Let Xg=D(g)XI be the vector produced by the action of

the element gcG. We define the extended corfiguration matrix as the IJG

1" , j Gram matrix whose entries are

cgg=xs Xg g,g'[: G= gg, ,

Since H#{e}, the vectors of the set S(G)Xj are not all distinct; in

fact the same vector appears with multiplicity 1HI.

The following theorem illustrates the shape and structure of configura-

q, tion matrices which rely in depth on the associated group.

..-
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Theorem 5.

The rows of any configuration matrix of a group code are permuta-

tions of the first one.

This applies to both extended and not extended configuration matrices.

For a proof see 131 and [101.

It is not hard to verify that the extended Ce configuration matrix is

the Kronecker product of C by a matrix J, (possibly with a re-ordering

of rows and columns):

Ce= C 0 J

where J is a convenient matrix of which all entries are Is.

The importance of the configuration matrix C of a group codes, was

enhanced by Slepian's proof, [31, that it is possible to recover the

vectors of the code from C. Let P11(g), gcG, denote the permutation

matrices of the right permutation representation of G induced by its

subgroup H; let AG(H) be the group algebra of G generated by these

permutation matrices, and let AZ(H) be the centralizing algebra of

AG(H). We have the following theorems.

Theorem 6.

The extended configuration matrix of a group code can be written as

t he sum

Ce= X C(g) L(g)

where L(g), geG, are the permutation matrices of the left regular

permutation representation of G.

01

/

Theorem 7.(Slepian) A

The extended configuration matrix commutes with all the permutation

matrices of the right regular permutation representation of G, i.e. Ce

belongs to the centraling algebra of the group algebra of the right

regular permutation matrices.

The configuration matrices of different group codes generated by diffe-

12



rent irreducible representations of the same group G may originate an

orthogonal basis in the regular group algebra A(;i{e}), as stated in the

following theorem due to Blake.

Theorem 8.

.4 Let D(g) and D'(g) be real irreducible represent at ions of the t in ite

group G of dimensions n i and nj, respect ively, and C i and Cj t lhe

configuration matrices of the group codes {I)(g)Xi, gcG} and ({)'(g)Xj,

gcG}, respectively. Then

i) if D(g) and D'(g) are not equivalent, then C i Cj = 0 for any

Xi and Xj;

ii) if D(g) = D'(g) and Xi = Xj, then (Ci) 2=(G/n i) 11X1112 Ci .

For a proof see Blake and Mullin [12].

Furthermore special structures of the configuration matrix may uniquely

characterize the group code.

Theorem 9.(Blake)

Let us consider the configuration matrix C of an [M,nj code in which

all entries of the first row are distinct.

Then C is the configuration matrix of a group code if and only if:

i) its rows are permutations of the first one;

ii) M is a power of 2, i.e. M=2s;

iii) in the decomposition

C= Z c i Pi

the matrices Pi are permutation matrices of order two and

commute with each other.

Moreover n>_s and the group generating the code is commutative of type

(1,11 .... 11).

Now we can devise a general theorem concerning the conditions for a

given Gram matrix to be the configuration matrix of a group code.

However the formulation of such general conditions may be quite unsati-
d4
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sfactory, because they lack either classical mathematical fascination

or practical utility. It is a challenging question to find more pleas-

ant and possibly useful conditions.

Theorem 10.

A Gram matrix C is the contiguration matrix of a group code if and only

if

i) rows of C are permutations of the first one;

ii) a matrix J, all entries of which are Is and the order of

which is not greater than (M-1)!, exists such that the

matrix C'=C o J commutes with all matrices of a right

regular representation of a group G.

See [10] for a proof.

We stop here the presentation of Slepian's group codes. in the next

section we shall consider an extension that will include multilevel

codes which share, of course, the same underlying property of syrrmuetrv.

V - GENERALIZED GROUP ALPHABETS

The class of multidimensional alphabets is introduced. Special instan-

ces of these codes have been widely used for designing multidimensional

signals in combined modulation and coding. Their structure is very rich

in symmetries and, as far as we know, most of the signal constellations

in actual use, either equienergetic or not, belong to this family.

Definition 3.

Consider a set of K n-vectors X = {X1, ...,XKI, called the initial

set, and L orthogonal n x n matrices Sl,..., SL that form a represen-

tation S(G) of the group G. The set of vectors S(G)X1, ... P S(G)XK

obtained from the action of S(G) on the vectors of the initial set is

called a Generalized Group Alphabet, and from now on shortened to GGA.

14



Definition 4.

A GGA is called separable it the vectors ot the initial set art, t ran-

sformed by S(G) into either disjoint or coincident. vector set.s, i.e.,

S(G)X n S(G)Xk

-k

Since an orthogonal mat r ix t r .ansti 0-115 a Voct o i1! ono 1i1 b1 1 he .salme

length, the signals associated wit hi a (;(;A have as rmianv ,ergv leve ls as

there are in the initial set.

Definition 5.

A GGA is called regular if the number of vectors in ea(ch subaIphabet

S(G)Xj, j=l, ... ,K, does not depend on j , i . e ., e;ch vector ot t be

initial set is transformed by S(G) into the same i(mber ofI dist inot

vectors. A regular GGA is called strongly regular it each set S((;)X-

contains exactly L distinct vectors.

The following result stems directly from the de init ions.

Theorem 11.

The number M of vectors in a regular GGA is a mult iple of K. If GGA is

strongly regular, then M=KL.

We consider now some distance properties of the elements of a GGA.

Choose a partition of a GGA into m subsets Z1 Z2 .. , . For each

subset Zi, we can define the intradistance set as the set of all the

Euclidean distances among pairs of vectors in Z i. For any pair of

distinct subsets Zi, Z., we define their interdistance set as the set

of all the Euclidean distances between a vector in Z i and a vector in

zj.

15
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Definition 6.

The partition of a separable GGA into m subsets Z . .l is called

fair if all the subsets are distinct, include the same number of Vc-

tors and their intradistance sets are equal.

We shall now present a constructiv et hod to geie rate 0 lir j.A rt it i(ns

o of a GGA. Consider the generating group S((;) of the (;GA, ,fii, (A its 

subgroups, say S(H), and the partit ion ot S((;) into loft C vn;et; o ft

S(H). We have the following result.

Theorem 12.

If the left cosets of the subgroup S(H) are applied to the initial set

of a strongly regular GGA, this procedure results in a fair partition

of the GGA. Under the same hypotheses, if S(0) is a normal subgroup,

then left and right cosets give rise to the same fair partition.

For a proof see [11].

The condition of strong regularity of the GGA can be removed: but in

this case it may happen that different cosets generate the same element

of the partition. Hence, some of the cosets must be removed from consi-

deration. Moreover, notice that if S(11) is a normal subgroup of S(G),

then we do not need to distinguish between left. or right coset parti-

tions. On the contrary, if S(H) is not normal, the partitions obtained

from right cosets may not be fair, as it. can be shown by a counterexam-

ple. In some cases, we are interested in further partitioning every

element Zi in the same number of subsets. This leads to the concept of

a chain partition, that is the GGA is partitioned in subsets which in

turn are partitioned in the same number of sub-subsets, and so on. We

call level of a subset in the chain partition the number of inclusions

beetwen the given subset and the whole group code.

16
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I e efinit ion 7.

The chain part ition of a separable GGA is called lair if any t wo

elements of the partition at the same level of the chain include the

same number of vectors and have eq'ital intradistance sets.

For fair chain partitions we Lave the tollowing t heorem.

TIheo rem 1 3.

Consider a strongly regular- GGA, and a chain of subgroups of its

generat ing group S(G), that is

S(H 1 ) (_ S(l12 ) c S(" 3 ) . ....- S( s ) = S((;)

Use If1 and its left cosets to generate a partition of GGA. Then, use

s-I and its left cosets in 1ls to further partition all the sets of the

previous partition. Repeat the procedure with Hs- 2 , and so on, until

H, and its left cosets in H? are used. The resulting chain partition of

GGA is fair.

A theorem concerning the interdistance sets sheds some further light on

the symmetry properties of GGA's.

Theorem 14.

Let H be a normal subgroup of G. The partition of a strongly regular

GGA obtained by applying the left cosets of H to the initial set X has

, the following property: the interdistance set associated with any two

cosets, say SIH and S 2H, is a function only of the coset S 3H, where

S3 = sTs 2 , and not of S1 , S2 separately.

For a proof see [11).

We conclude this section by showing how GGAs, in particular group

codes, can be used in conjunction with error control codes to exploit

the channel capacity further. We shall illustrate first the joint use

of multidimensional alphabets and block codes, thus we will describe

how the signal alphabets are paired to convolutional (trellis) codes.

17



I ma i and lii rakawa 1 33 1 and recent 1Y G i nz bu rg [ 3 11 have described con -

struIction1s which make it- possible to design set of signals with a

regular structure and with an arbitrary minimum distance as insured by

the algebraic properties of block codes. Ginzburg's construction consi-

o ders 1, block encoders C1 ,C2 ,...CI which accept source symbols, and

output 1, blocks (qli,q- ? .... qNi), i1l . , of N symbols each. The

* modulat or f maps each L-tuple (jj ...... qjl, ) , j=l. N, into the vector

X j = f( jl,.. qjL ),  j= 1, ... , N

chosen from a GGA of M=M, .. .Mi elements. This mapping is obtained as

follows. In GGA we define a system of L partitions such that each

class of the £-th partition includes M classes of the (Z-l)-th

partition. Each class will consist of M(Z)=M1 M2 . . .M signals. By

numbering the classes of the (Z-1)-th level occurring in a class of the

--th level we can obtain a one-to-one mapping of the set of classes of

the ( -l)-th partition onto the set of integers {0,...,M-I}. There-

f. tore, if qjij are chosen in the set {0,. M-), £=1,. . .,L, any L-tuple

% qjl. qjI )  defines a unique value of the j-th elementary signal

X: =f. l .. .qj

We shall now see how an Ungerboeck code can be designed using GGA. The

procedure suggested in [471 and called "mapping by set partitioning",

can he achieved by the notion of fair partition, which represents a

systematic generalization of that concept.

Each coded symbol depends on k+v source bits, namely the block

t=(a 1,...,ak) of k bits generated by the source, plus v bits preceding

this block. The v bits determine one of the N=2v states of the encoder,

say o = (ak+l, ... , ak+v) , an=0,1. The encoder state for the next

coded symbol is obtained by shifting the an's k places to the right,

,dropping the right-most k bits and inserting on the left the most

@,1 recent k source bits. The encoded symbol Xj, which is an element of a

GGA, depends on i and a and, in this framework, the encoding procedure

18
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can be described using a trellis and by assigning to the branches

outgoing from each node the set of symbols obtained from a fair part i-

tion of a GGA.

VI - THE INITIAL VECTOR PROBLEM

The minimum distance is a relevant factor to define the code performan-

ce on noisy channels because it is a fact that distant signals are hard

to confuse as an effect of the noise. Moreover monotone decreasing

functions of the minimum distance constitute an upper bound to the

error probability. It follows that codes with large minimum distances

are desirable, and in particular the choice of Slepian's group codes

with the greatest minimum distance leads to the initial vector problem

which is also interesting from a geometrical point of view.

The initial vector problem for group codes can be stated as follows:

"V given a finite group S(G) of orthogonal matrices that generates a group
code [M,n] by operating on an initial unit vector X, among all such

vectors X find out the vector Xo for which the minimum distance is the

greatest possible. We have to find the maximum of the minimum of the

distances, i.e. to determine a kind of saddle point with respect to the

continuous variable X and discrete variable g:

max [ min d(D(g')X,D(g)X)]

X g#g'

where the maximum is taken over all the vectors of Rn with the con-

straints ljXi=i and S(H)X=X. S(H) is a subgroup of S(G), possibly H={e}.

At the present time no general solution is known. The problem has been

solved for many classes of group codes and for codes generated by

special representations. Djokovic and Blake, [25], settled the case of

full homogeneous component; Downey and Karlof found all the optimal

group codes in three dimensions [28]; Biglieri and Elia identified the

19
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opt imal ini t i lI vector for Variant I permutat i on codes [0), anti

showed tiat for cyclic codes 181 as well as for a he I ian codes t he

optimal init ial vector is obtained by solving a I i near p rog rammin g

problem. Nevertheless, the evidence so far is t hat t he problem caInIot

have, in geneoral , a closed form solution.

We do rut d igress on the meaning of "solut ion", but we adopt lIhe

pragmat ic view that for practical purposes any kinid ot nimierical soli-

t ions shil d he regarded as a valid one.

For comput at ional approaches the initial vector problem can he st at td,

in general, as a mathematical problem with a quadratic objective sub-

jecttd t o quadratic constraints, [37].

Let d be the minimum square distance. The optimal initial vector X, is

tho so itt i Il t o:

lo = Max Min d2 (D(g)X1 ,X1 )

whoret" tilt maximum is taken over all unit vectors and the minimun is on

all element s gQ(; different from the identity.

orany unit vector X and unitary matrix D(g), we have

- ,i ()(g)X,X)=2-2(D(g)X,X).

This 17aximiz:in:, the minimum distance is equivalent to minimizing t he

maximum inner product. We may assume the maximum inner product posit iye

mnd equa I t o r . tet Y=(1 /r)X. Then, for all non identity elemeits of

1 , (1)(g)Y YIa)<l ad (Y,Y) I/r 2 . Hence Y is a solution to:

Findt .Max .,bY,Y)

subject ta I)(g)Y,Y)f_1 whenever g is not the identity in G.

'[he problem of the initial set of vectors for GGA is more complicated,

of course, t-han for group codes because more than one vector is to be

found and different objectives may motivate the choice. In this case

one formulation of the initial set vector problem is the following:

G iven S(;) find a set {XI, ... XK} of K n-dimensional

vectors with average square norm equal to E, such that

the generated GGA is regular and such that the minimum

distance is as large as possible.

20
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lere we do not treat tIle subject further, as the di.Scu.ssion woUld be
.wrv long. For example GGA used in conjuction with error control codes

'

• hopefully must have the maximum possible minimum int radistance associa-

ted to a given fair- partition.

, In this context the open problems are countless; the few known solu-

t ions e it her are heurist ic or obtained by hand man i pu liat ions. Much work

must st i 1 1 be done.

VII - THE CONSTRUCTIVE VIEW

One important intent of the group code theory is to produce good point

constcllations for the design of digital signals to be used in data

Stransmission, vector quantization, pattern recognit io or in many other

'fields. A second and ambitious objective of this t-hory is the systema-

tic classification and construction of all regular point constellations

in n-dimensional spaces. Before discussing the capabilities of the

coustruct ive methods of group coding theory, we present three lt em-

:t ing point- constellations that have large minimum distances and provi-

d a good instance of this matter.

The first example is given by the [8,3] group code which is the classi-

P' cal constellation shown in Fig.2, (edges connect. point.s at minimum

tdist-ance), that has a minimum distance slightly greater than the cube.

It is generated by the action of the representation of the cyclic group

C".

The group is generated by:

cos(uh/4) sin(-h/14)

D(g)= (-1 )h 
)

-sin(Tih/4 ) cos(Olh/1)

The initial vector is (( 1/(2Th + 1)), ,( 242/(242" + 1)), 0)

O..

The minimum distance is di n = 4/(2 + 11/2.) > 4/3

','211
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Fig. 2

S.'

The second example is a not regular and not equienerget-ic GGA having 14

* points in 3 dimensions. The configuration shown in Fig.3, is generated

by t he act ion ot a representat ion of the group o t he cube

C x C C-"

The init ial set is {(u, 0, 0), (v, v, v)}, where

v (7 > 2 /2)/123 = 4'7 (13 + 8 3.

The minimum distance isd 2 in= 28 (7 - 2 42)/12-1 0.9496 and it is

significantly greater than 0.93386, the minimum distance of tie best

known spherical 14 point con figurat ion.

5% .

Fig.3
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I i II' v I I t liL t hi id iand last examp le is te If( ,. I J grou p code( generatedi
by the t i a rep resentat i onl of t he abe Ii ; g rot.p C. x C. The

cOit igurit ion is shown in Fig.4. The representat i on is generated b y(c o s(ih//4) si,,( i/4)\ k=1,>
1)1 ;)- ( * (-1)hi+k

I., init ii vector is (4I4 - 112), ( /2- 1)12), 1(2 - 0Th, 0)

IL h iIlilti Ifm (I st ance is dmin 2 (2 - V -) = 1.1716

Not k- t hat one of the most used point constellations, the two dimensio-

in:ll 1-AIM has minimum square distance 2/5= 0.4.

• " - \ 1 '... . -

t.]---- . i

p] Fig.!'

Inc, i ,',i ert . involved in the cont ruct ive <aspect of group codes are

I .l-!,, 11, 1 horem bv .Jordan stat ing that the numbe r of I inite

g rupIs with trivial maximal normal abelian subgroup, which

hWIvO an iTr reluc i lhe represent at ion of dimension n, is finite

and ipper hounded bv b(rn)= n! 6 T(n1) (n-i )+2, where 7(n)

,(')tiit 1 t fi h number of primes less than n;

2) the recert classification of all finite simple groups;

) the tact that the number of finite groups of given order is

fi nite;

23
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% 4) the comp let e classification of all commutative groups is

% well as thoir representat ions.

Finite simple groups, Galois' fundamental discovery, are instrumenta l

in bui ld ing up a I I other groups and their representiat ions. Abel ian

groups t oge tho r wit h1 f i n1 i te group having trivial cent or can be used t o

classify all groups which have a representat ion i [I 11-d imells i oll I

spaces. In t h is context it is useful to recall the outst and ing theorem

of the classificat ion of finite groups, completed in 1981. This theorem

resulted from the global efforts of several hundred mathematicians from

all-over the world over a period of 100 years. It is remarkable by

itself and relevant to the classification of group codes.

-_-*'. Theorem 15. [20]

The finite simple groups are to be found among:

i) the cyclic groups Cp of prime order p.

ii) the alternating groups AT of degree n at least 5.

iii) the Chevalley groups

iv) the Tits group

v) the 26 sporadic simple groups.

The Mathieu group, usually denoted by M,,, played a central role in the

discovery of all 26 sporadic greups. M, is also important in the

theory of error-correcting codes, because it is the automorphism group

of the Golay code (24,12,8), the only binary perfect multiple error

correcting code; see [39,49,21].

Even if it is not necessary to resort to the above definitive theorem,

simple grcups play a basic role in group codes.

Theorem 16.

Let us consider a [M,n] group code generated by a group G through

its representation D(g). If M is a prime number then the group code is

generated by a cyclic subgroup CM of G.I
24
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Theorem 17.

No [H,n) group Codes OXists if M is ar odd pr ri, .,il t i odd.

Theorem 18.

A [M,n) group code can be const ricted u;ing top s,,;oit.it ions of ,i

cyclic group provided that either

i) n is even and K>2
%0

ii) n is odd and N is even.

Theorem 19.

The number of [M,n] group codes, generated hv irreducible repre-

sentations of groups with trivial maximal normal abel ian subgroup is

finite and bounded by a function of n alone.

Concluding this section we remark that the problem of the existence of

* group codes for every M and n s very interest in.g as it concern lhe

existence of regular configurations of points on n-dinon.-:iolt);I spheres,

and generalizes the vert-ex configurations of regular polvop-s.

We can summarize the results as follows:

a) n even M>n+l at least one group code gonertod by a

cyclic group of order M oxist s

b) n odd, M venin+1 at least- one grotip ,hle gonerat ed by a

cyclic group of order H exist

c ) n even M odd prime only one group code gene rated b t he

* cyclic group of order M ox i s s

d) n odd, M odd prime no group code exists

e) n = 3, any M all group codes have boon classified by

*. Downey and Karlof. No group codes with M

odd exist.

'pS . '',2 5



The def init ive classification of all group codes is far from complete,

so that many open problems and conjectures st i 1 deserve attent ion.

Most of these problems are appealing and may produce beautiful results.

We reca I I by way of samplo, two interest ing problems that are st i I 1

open:

- One group code in dimension 5 with M=15 is known to exist, 1261.
It is conjectured that it is the on lv group code in five dimensio-

nal space with an odd number of points.

- Brauer 115] and his school have reached the classification of all

groups having an irreducible representation in dimension 4 and 5.

It would be interesting to find out all group codes in dimension 4

(the useful dimension for today's applications).

-- The determination of all group codes [M,51 would also be intere-

sting as well as the classification of [M,7J. The latter is possi-

ble due to the complete list of groups with irreducible represen-

tation in dimension 7 obtained by Wales 150, 51, 521.

VIII. CONCLUSIONS

The impact of ancient and modern mathematical concepts on manipulation,

transmission and storing of information has made a science of fine,

intelligent but scattered techniques.

In this paper we reported on group code theory as an application of

F' general results originated from the ancient geometry. The geometric

/, view provides the appropriate framework for dealing with digital signal

processing, signal design, vector quantization and in general communi-

cation systems. To enhance the importance of this concept in communica-

tion we also considered the combination of these alphabets with block

or trellis codes. We have not described the interesting connection of

lattices, group codes and combined modulation and coding, this beauti-

ful subject is thoroughly developed in the fundamental book 121) by

26

0.,



Conway and S loane.

In this paper no essentially new results were proposed. However we hope

that the presentation of a topic which is earning a prominent position

with increasing applications in the new global commun i cation system

will be of some interest, especiallv to young researchers who are

looking for fruitful areas of resear1iCh With high sci ent if iC content and

useful app itiat ions.

We think t hat group code theory, which may be credited of a long

history dated back to ancient regular polyhedra, is a good example of

Feller's conception of mathematics 1561. In fact we wish to conclude

with Feller's words:

"The manner in which mathematical theories are applied does

not depend on preconceived ideas: it is a purposeful techni-

que depending on, and changing with experience".

.2
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